
Proceedings IEEE Visualization ’99, pages 291–298,c� IEEE Computer Society Press, 1999.

LOD-Sprite Technique for Accelerated Terrain Rendering

Baoquan Chen�

SUNY at Stony Brook
J. Edward Swan II�

Naval Research Lab
Eddy Kuo �

Naval Research Lab
Arie Kaufman�

SUNY at Stony Brook

Abstract

We present a new rendering technique, termed LOD-sprite render-
ing, which uses a combination of a level-of-detail (LOD) represen-
tation of the scene together with reusing image sprites (previously
rendered images). Our primary application is accelerating terrain
rendering. The LOD-sprite technique renders an initial frame using
a high-resolution model of the scene geometry. It renders subse-
quent frames with a much lower-resolution model of the scene ge-
ometry and texture-maps each polygon with the image sprite from
the initial high-resolution frame. As it renders these subsequent
frames the technique measures the error associated with the diver-
gence of the view position from the position where the initial frame
was rendered. Once this error exceeds a user-defined threshold,
the technique re-renders the scene from the high-resolution model.
We have efficiently implemented the LOD-sprite technique with
texture-mapping graphics hardware. Although to date we have only
applied LOD-sprite to terrain rendering, it could easily be extended
to other applications. We feel LOD-sprite holds particular promise
for real-time rendering systems.

Keywords: Image-Based Modeling and Rendering, Texture Map-
ping, Acceleration Techniques, Multi-Resolution, Level of Detail,
Terrain Rendering, Virtual Reality, Virtual Environments.

1 INTRODUCTION

As scene geometry becomes complex (into the millions of poly-
gons), even the most advanced rendering hardware cannot provide
interactive rates. Current satellite imaging technology provides ter-
rain datasets which are well beyond this level of complexity. This
presents two problems for real-time systems: 1) the provided frame
rate may be insufficient, and 2) the system latency may be too high.
Much of real-time computer graphics has been dedicated to finding
ways to trade off image quality for frame rate and/or system latency.
Many recent efforts fall into two general categories:

Level-of-detail (LOD): These techniques model the objects in the
scene at different levels of detail. They select a particular LOD for
each object based on various considerations such as the rendering
cost and perceptual contribution to the final image.

Image-based modeling and rendering (IBMR): These tech-
niques model (some of the) objects in the scene as image sprites.
These sprites only require 2D transformations for most rendering
operations, which, depending on the object, can result in substantial
time savings. However, the 2D transformations eventually result in
distortions which require the underlying objects to be re-rendered
from their full 3D geometry. IBMR techniques typically organize

1Department of Computer Science, State University of New
York at Stony Brook, Stony Brook, NY 11794-4400, USA. Email:
�baoquan�ari�@cs.sunysb.edu

2Virtual Reality Laboratory, Naval Research Laboratory Code 5580,
4555 Overlook Ave SW, Washington, DC, 20375-5320, USA. Email:
swan@acm.org, ekuo@homemail.com

Culling
3D

Object

Quality

LOD Renderer

IBMR Renderer

Output
Image

Output
Image

Figure 1: Traditional hybrid LOD and IBMR techniques render
each object either as a sprite or at a certain level of detail.

Culling
3D

Object

Quality

Output
Image

LOD
+

IBMR
Renderer

Figure 2: The LOD-sprite technique renders each object as both a
sprite and as a geometric object at a certain level of detail.

the scene into separate non-occluding layers, where each layer con-
sists of an object or a small group of related objects. They render
each layer separately, and then alpha-channel composite them.

Some hybrid techniques use both multiple LODs and IBMR meth-
ods [16, 27, 22]. A general pipeline of these techniques is shown
in Figure 1. Each 3D object is first subjected to a culling operation.
Then, depending upon user-supplied quality parameters, the system
either renders the object at a particular LOD, or it reuses a cached
sprite of the object.

This paper presents the LOD-sprite rendering technique. As
shown in Figure 2, the technique is similar to previous hybrid tech-
niques in that it utilizes view frustum culling and a user-supplied
quality metric. Objects are also modeled as both LOD models and
sprites. However, the LOD-sprite technique differs in that the 2D
sprite is coupledwith the LOD representation; the renderer utilizes
both the LOD and the sprite as the inputs to create the output im-
age. The LOD-sprite technique first renders a frame from high-
resolution 3D scene geometry, and then caches this frame as an
image sprite. It renders subsequent frames by texture-mapping the
cached image sprite onto a lower-resolution representation of the
scene geometry. This continues until an image quality metric re-
quires again rendering the scene from the high-resolution geometry.

We have developed the LOD-sprite technique as part of the ren-
dering engine for a real-time, three-dimensional battlefield visual-
ization system [9]. For this application the terrain database con-
sumes the vast majority of the rendering resources, and therefore in
this paper our focus is on terrain rendering. However, LOD-sprite
is a general-purpose rendering technique and could certainly be ap-
plied to many different types of scene geometry.

The primary advantage of LOD-sprite over previous techniques
is that when the sprite is transformed, if the 2D transformation is
within the context of an underlying 3D structure (even if only com-

291

Proceedings IEEE Visualization ’99, pages 291–298,c� IEEE Computer Society Press, 1999.

posed of a few polygons), a much larger transformation can occur
before image distortions require re-rendering the sprite from the full
3D scene geometry. Thus, the LOD-sprite technique can reuse im-
age sprites for a larger number of frames than previous techniques.
In addition, because the sprite preserves object details, a lower LOD
model can be used for the same image quality. These properties al-
low interactive frame rates for larger scene databases.

The next section of this paper places LOD-sprite in the context of
previous work. Section 3 describes the LOD-sprite technique itself.
Section 4 presents the results of our implementation of LOD-sprite.

2 RELATED WORK

The previous work which is most closely related to LOD-sprite can
be classified into image-based modeling and renderingtechniques
and level-of-detailtechniques. We first revisit and classify previous
IBMR techniques while also considering LOD techniques, and then
focus on some hybrid techniques.

2.1 Image-Based Modeling and Rendering

Previous work in image-based modeling and rendering falls primar-
ily into three categories:

(1) The scene is modeled by 2D image sprites; no 3D ge-
ometry is used. Many previous techniques model the 3D scene
by registering a number of static images [2, 18, 19, 26]. These
techniques are particularly well-suited for applications where pho-
tographs are easy to take but modeling the scene would be difficult
(outdoor settings, for example). Novel views of the scene are cre-
ated by 2D transforming and interpolating between images [3, 18].
By adding depth [17] or even layered depth [23] to the sprites, more
realistic navigation, which includes limited parallax, is possible.
Another category samples the full plenoptic function, resulting in
3D, 4D or even 5D image sprites [13, 10], which allow the most
unrestricted navigation of this class of techniques. However, all
of these techniques lack the full 3D structure of the scene, and so
restrict navigation to at least some degree.

(2) The scene is modeled using either 3D geometry or
2D image sprites. Another set of previous techniques model
each object with either 3D geometry or a 2D image sprite, based
on object contribution to the final image and / or viewing direc-
tion [5, 16, 20, 21, 22, 27]. The LOD-sprite technique differs from
these techniques in that it integrates both 3D geometry and 2D im-
age sprites to model and render objects.

(3) The scene is modeled using a combination of 3D ge-
ometry and 2D image sprites. There are a group of tech-
niques which add very simple 3D geometry to a single 2D image
[6, 7, 12, 24], which guides the subsequent image warping. De-
bevec et al. [7] construct a 3D model from reference images, while
Sillion et al. [24] and Darsa et al. [6] use a textured depth mesh
which is constructed and simplified from depth information. In
general, using a depth mesh with projective texture mapping gives
better image quality than using depth image warping [17], because
the mesh stretches to cover regions where no pixel information is
available, and thus no holes appear. The main advantage of adding
3D scene geometry to the image is that it allows the warping to ap-
proximate parallax, and therefore increases the range of novel views
which are possible before image distortion becomes too severe.

Our LOD-sprite is most closely related to the techniques of Co-
hen et al. [4] and Soucy et al. [25]. Both create a texture map from
a 3D object represented at a high geometric resolution, and then
subsequently represent the object at a much lower geometric reso-
lution, but apply the previously created texture map to the geometry.

However, the LOD-sprite technique generates texture maps (image
sprites) from images rendered at run-time, while these techniques
generate the texture map from the object itself.

2.2 Level-of-Detail

There is a large body of previous work in level-of-detail (LOD)
techniques, which is not reviewed here. The general LOD-sprite
technique requires that geometric objects be represented at various
levels of detail, but it does not require any particular LOD represen-
tation or technique (although a specific implementation of LOD-
sprite will need to access the underlying LOD data structures).

This paper does not cover how to create LOD representations of
a terrain — there exist numerous multiresolution representations for
height fields. Lindstrom et al. [14] and Hoppe [11] represent the
most recent view-dependent terrain LOD methods, and Luebke and
Erikson [15] can also be adapted for terrain datasets. In this paper
we adopt the technique of Lindstrom et al. [14]. This algorithm
organizes the terrain mesh into a hierarchical quadtree structure. To
decide which quadrant level to use, the algorithm computes a screen
space error for each vertex, and compares it to a pre-defined error
threshold. This error measures the pixel difference between the full-
resolution and lower-resolution representations of the quadrant.

2.3 Accelerated Virtual Environment Navigation

As stated above, many LOD and IBMR techniques have been ap-
plied to the problem of accelerating virtual environment naviga-
tion. Of these, LOD-sprite is most closely related to the techniques
of Maciel and Shirley [16], Shade et al. [22], Schaufler and Stuer-
zlinger [21], and Aliaga [1]. All of these papers present similar
hybrid LOD/IBMR techniques. They create a hierarchy of image
sprites based on a space partition of the scene geometry. In sub-
sequent frames, for each node the techniques either texture map
the node sprite onto a polygon, or re-render the node’s 3D geom-
etry if an error metric is above a threshold. Each reused image
sprite means an entire subtree of 3D geometry need not be ren-
dered, which yields substantial speedup for navigating large virtual
environments. The main limitation of these techniques is that creat-
ing a balanced space partition is not a quick operation, and it must
be updated if objects move. Also, to avoid gaps between neighbor-
ing partitions, they either maintain a fairly large amount of overlap
between partitions [22], or they morph geometries to guarantee a
smooth transition between geometry and sprite [1]; both operations
add storage and computational complexity. LOD-sprite differs from
these techniques in that they interpolate the image sprite on a single
2D polygon, while LOD-sprite interpolates the image sprite on a
coarse representation of the 3D scene geometry.

3 THE LOD-SPRITE TECHNIQUE

3.1 Algorithm

The general idea of the LOD-sprite technique is to cache the ren-
dered view of a high-resolution representation of the dataset. We
refer to this image as a sprite, and the frame where the sprite is
created as a keyframe. LOD-sprite renders subsequent frames, re-
ferred to as novel views, at a lower resolution, but applies the sprite
as a texture map. LOD-sprite measures the error caused by the di-
vergence of the viewpoint from the keyframe as each novel view is
rendered. When this error exceeds a threshold, LOD-sprite renders
a new keyframe.

Pseudocode for the LOD-sprite algorithm is given in Figure 3.
Lines 1 and 5 generate a sprite image from high-resolution scene
geometry. This is necessary whenever the viewer jumps to a new
viewpoint position (line 1), and when LOD-sprite generates a new

292

Proceedings IEEE Visualization ’99, pages 291–298,c� IEEE Computer Society Press, 1999.

1 render sprite image from high-resolution
scene geometry at viewpoint vp

2 for each novel viewpoint vp
3 let error = ErrorMetric(vp, sprite)
4 if error � threshold then
5 render sprite image from high-resolution

scene geometry at viewpoint vp
6 let polys = set of low-resolution scene

geometry polygons
7 for each poly
8 if WasVisible(poly, sprite) then
9 render poly, map with sprite
10 else
11 render poly, map with original texture map

Figure 3: Pseudocode for the LOD-Sprite algorithm.

keyframe (line 5). At line 2 the algorithm processes each novel
viewpoint. Lines 3 and 4 measure the error associated with how
far the current viewpoint diverges from viewpoint at the time when
the sprite was rendered; the procedure ErrorMetric is described in
Section 3.2. At line 6 the algorithm prepares to render the frame
at the current viewpoint by gathering a set of polygons from a
low-resolution version of the scene geometry. Line 7 considers
each polygon. Line 8 determines, for each low-resolution poly-
gon, whether the polygon was visible when the sprite image was
taken. This routine, WasVisible(described in Section 3.3), deter-
mines whether the polygon is texture mapped with the sprite texture
(line 9) or the original texture map (line 11).

The sprite data structure holds both the sprite texture map and the
keyframe viewing parameters; LOD-sprite uses both to map poly-
gons with the sprite texture in line 9. Creating a new sprite (lines
1 and 5) requires copying the frame buffer into texture memory,
which is efficiently implemented with the OpenGL glCopyTexIm-
age2Dfunction.

Texture mapping a keyframe could be achieved using projective
texture mapping: a light placed at the keyframe camera position
projects the sprite image onto the scene geometry. However, our
implementation of LOD-sprite does not use projective texture map-
ping, because the current OpenGL implementation does not test for
polygon visibility. Occluded polygons in the keyframe are mapped
with wrong textures when they become visible. Therefore, our im-
plementation detects polygon visibility on its own (line 8), and ap-
plies a different texture map depending on each polygons’ visibility
(lines 9 and 11).

3.2 Error Metric

LOD-sprite decides when to render a new keyframe based on an
error metric which is similar to that described by Shade et al. [22].
Figure 4 gives the technique, which is drawn in 2D for clarity. Con-
sider rendering the full-resolution dataset from viewpoint position
��. In this case the line segments �� and �� are rendered (in
3D these are polygons). From this view, the ray passing through
vertex � intersects the edge �� at point ��. After rendering the
full-resolution dataset, the image from �� is stored as a texture map.
Now consider rendering the scene from the novel viewpoint ��, us-
ing the low-resolution representation of the dataset. In this case the
line segment �� is rendered, and texture mapped with the sprite
rendered from ��. Note that this projects the vertex � to the po-
sition �� on ��. From �� this projection makes no visible differ-

ence. However, from ��, vertex �� is shifted by the angle � from
its true location �. This angle can be converted to a pixel distance
on the image plane of view ��, which is our measure of the error of
rendering point � from view ��:

� � � � �	 (1)

where � is the view angle of a single pixel (e.g., the field-of-view
over the screen resolution), and � is a user-specified error threshold.
As long as Equation 1 is true, we render using the sprite from the
most recent keyframe (e.g., line 5 in Figure 3 is skipped). Once
Equation 1 becomes false, it is again necessary to render from the
full-resolution dataset (e.g., line 5 in Figure 3 is executed).

θ
v1

v2

C

a

A

B
b

C’

α

Figure 4: Calculating the error metric.

Theoretically, we should evaluate Equation 1 for all points in the
high-resolution dataset for each novel view. Clearly this is impracti-
cal. Instead, our implementation calculates � for the central vertex
of each low-resolution quadtree quadrant. The resolution of each
quadrant is determined by the number of levels we traverse down
into the quadtree that is created by our LOD algorithm [14]. We
calculate the central vertex by averaging the four corner vertices of
the quadrant. To calculate �, we have to know the point ��. We cal-
culate �� by interesting the vector ��� with the plane spanned by
the estimated central vertex and two original vertices of the quad-
rant. Once we know ��, we calculate � from the dot product of the
vectors ���� and ���.

We next calculate the average sum of squares of the error for all
evaluated quadrants and compare this with �� � ���:

�
�

���
���

� �� � ���	 (2)

where
 is the number of low-resolution quadrants. When this test
fails, line 5 in Figure 3 is executed.

3.3 Visibility Changes

As the viewpoint changes, polygons which were originally oc-
cluded or culled by the view frustum may become visible. Figure 5
illustrates this problem. Let the two objects represent mountains.
The light shaded region of the back mountain indicates occluded
polygons in the keyframe, while the heavy shaded regions in both
mountains show polygons culled by the view frustum. If these re-
gions become visible in a novel view, there will be no sprite texture
to map on them. Our solution is to map them with the same texture
map we use to generate the keyframe.

We classify the visibility of each polygon with a single pass over
all vertices of the low-resolution geometry. This loop is part of the
process of generating a new keyframe. For novel views, the visibil-
ity of each polygon to the sprite is already flagged. This visibility

293

Proceedings IEEE Visualization ’99, pages 291–298,c� IEEE Computer Society Press, 1999.

Keyframe viewport Novel frame viewport

Figure 5: The originally occluded or view frustum culled objects
may become visible.

flag controls which texture map is used for the polygon (and thus
line 8 in Figure 3 is a fast table look-up). OpenGL determines the
visibility of each polygon from the novel viewpoint using the hard-
ware �-buffer.

In our implementation, the terrain is represented by a triangle
mesh. We determine the visibility of each low-resolution trian-
gle using the keyframe viewing parameters and the keyframe �-
buffer. Our visibility determination for each triangle is binary,
which means we consider a partially occluded triangle to be fully
occluded. We do not attempt to subdivide partially occluded tri-
angles, because achieving this would require clipping the triangle
into visible and invisible sub-triangles [8]. This would not only be
expensive, but would also generate too many small triangles.

To accurately detect visibility, we should scan-convert the whole
triangle and detect the visibility of every pixel. This is obviously
too expensive. Instead, we only perform this detection for the three
triangle vertices. Only when all three vertices are visible do we
flag the triangle as visible. Of course, this fails for triangles with
unoccluded vertices but which are nevertheless partially occluded
(e.g., a part of an edge and interior could be occluded). Such tri-
angle will be erroneously flagged as visible. However, with terrain
datasets this rarely occurs, since the projections of background tri-
angles tend to be much smaller than foreground triangles.

We use the �-buffer to determine the visibility of each vertex.
When we calculate a keyframe, we store both the �-buffer and the
viewing matrix. Then, for each vertex, we calculate the ��	 �
screen coordinate and the �-depth value with the keyframe view-
ing matrix. We compare this depth value to the � value at location
��	 � in the �-buffer. This tells us whether the vertex is occluded
in the keyframe.

This raises several implementation issues. The first is that a ver-
tex is usually not projected onto an integer grid point in the �-buffer.
Using the �-buffer value at the closest grid position does not always
give the correct visibility, because that � value could represent a
neighboring triangle. Interpolating between neighboring � values is
also inappropriate, because they could represent disconnected ob-
jects. The second issue is that the LOD mesh is not static — we
compare the low-resolution geometry to the �-buffer rendered from
the high-resolution geometry.

Although it does not solve either of these problems, we have
obtained good results in practice by using the following equation to
determine visibility:

��vertex� �buffer� � �	 (3)

where �vertexis the calculated � value of the vertex, �buffer is the �-
buffer value at the closet grid point, and � is the specified ‘thickness’
of the visible surface. When Equation 3 is true we flag the vertex
as visible.

3.4 Implementation Notes

To further enhance rendering time, we have tried to optimize our
implementation for the graphics hardware. For each frame, we
need two texture maps — the original texture map and the current
keyframe — to map all of the visible polygons. It is much too costly
to load the appropriate map into texture memory on a per-polygon
basis. Instead, we load both maps into texture memory, and scale
the calculated texture coordinates so that each polygon accesses the
correct map. In addition, we use triangle strips as our rendering
primitive. The drawback of this primitive is that we can only apply
one texture map to the whole strip. For strips which contain both
visible and invisible triangles, we can only use the original texture
map.

4 RESULTS

Results are shown in Figures 6 and 7. The input is a ��� � ���
height field and ��� � ��� texture map. Figures 6a–e compare the
LOD-sprite technique to a standard LOD technique [14]. Figure 6a
shows a terrain dataset rendered from a low-resolution LOD de-
composition containing 1,503 triangles, while Figure 6b shows the
same terrain rendered from a high-resolution decomposition with
387,973 triangles. Both figures use the same texture map. Com-
paring 6a to 6b, we see that, as expected, many surface features are
smoothed out. Figure 6c shows the same view rendered with the
LOD-sprite technique, using the same 1,503 triangles as Figure 6a
but texture mapped with Figure 6b. Unlike Figure 6a the surface
features are quite well preserved, yet Figures 6a and 6c take the
same amount of time (10 milliseconds) to render. Figures 6d and
6e give difference images; Figure 6d gives the absolute value of the
difference between the high and low resolution images, while Fig-
ure 6e between the high and LOD-sprite images. Figures 6d and e
clearly show the image-quality advantage of the LOD-sprite tech-
nique. Notice, however, the bright band along the silhouette, both
against the horizon as well as the edge of the dataset in the lower
left-hand corner of the images. These appear because our LOD de-
composition [14] is not sensitive to the edge of the dataset or to
silhouette edges.

Figure 7a–e show similar results but are rendered from a view-
point over the mountains, looking down onto the plain beyond. In
this figure note that the close mountains appear very similar at low
resolution (a), high resolution (b), and with the LOD-sprite tech-
nique (c). This is because these mountains are so close that even at
a high resolution the polygons are large, and the LOD decomposi-
tion keeps these polygons at full resolution. The difference images
(Figures 7d and e) also demonstrate this. The comments regarding
the silhouette edge given above also apply to this figure, although
in this case the entire silhouette edge is also the edge of the data.

Figures 9–14 give the algorithm’s timing behavior for the camera
path shown in Figure 8. The camera starts away from the terrain,
zooms in, flies over a plain, and then over a mountain range and
onto the plain beyond. This path visits most of the interesting topo-
logical features of this dataset. The animation contains 600 frames
for all the figures except for Figure 12, where the frame count is
varied. Each frame was rendered at a resolution of ��� � ��� on
an SGI Onyx 2 with 6 195MHz MIPS processors and Infinite Re-
ality graphics. We rendered the same animation for three different
runs: 1) using a high-resolution LOD decomposition, 2) using a
low-resolution LOD decomposition, and 3) using the LOD-sprite
technique. The LOD-sprite technique used the same settings as the
high-resolution run for keyframes, and the same settings as the low-
resolution run for the other frames.

Figure 9 shows how the number of triangles changes as each
frame is rendered. The low-resolution and LOD-sprite runs have
identical triangle counts, except at the keyframes. The high-

294

Proceedings IEEE Visualization ’99, pages 291–298,c� IEEE Computer Society Press, 1999.

Figure 8: The camera path for Figures 9–14.

resolution run requires about 2 orders of magnitude more triangles.
The semi-log plot shows that both triangle counts have a similar
variation as the animation progresses.

Figure 10 shows how the LOD-sprite error (Section 3.2) changes
as each frame is rendered. The error always starts from zero for a
keyframe. As more novel views are interpolated from the keyframe,
the error increases. When the error exceeds ��� pixels, we calculate
another keyframe from the high-resolution scene geometry, which
again drops the error to zero.

Figure 11 shows the amount of time required to render each
frame. The high-resolution time runs along the top of the graph,
at an average of 526 milliseconds per frame. The low-resolution
time runs along the bottom, at an average of 22 milliseconds per
frame. The rendering time for the LOD-sprite frames follows the
low-resolution times, except when a new keyframe is rendered. For
this animation the system generated 16 keyframes, at an average
time of 680 milliseconds per keyframe. The great majority of the
LOD-sprite frames are shown near the bottom of the graph; these
took an average of 36 milliseconds to render. The overall average
for LOD-sprite was 53 milliseconds per frame.

Figure 12 shows the fraction of the total number of rendered
frames which are keyframes. This is plotted against the total num-
ber of frames rendered for the path shown in Figure 8. As expected,
as more frames are rendered for a fixed path, the distance moved
between each frame decreases, and so there is more coherence be-
tween successive frames. This figure shows how our system takes
advantage of this increasing coherence by rendering a smaller frac-
tion of keyframes. This figure also illustrates a useful property of
the LOD-sprite technique for real-time systems: as the frame up-
date rate increases, the LOD-sprite technique becomes even more
efficient in terms of reusing keyframes.

Figure 13 also shows the fraction of the total number of rendered
frames which are keyframes, but this time plots the fraction against
the error threshold in pixels. As expected, a larger error threshold
means fewer keyframes need to be rendered. However, the shape
of this curve indicates a decreasing performance benefit as the er-
ror threshold exceeds about ��� pixel. For a given dataset and a
path which is representative of the types of maneuvers the user is
expected to make, this type of analysis can help determine the best
error threshold versus performance tradeoff.

The LOD-sprite technique results in a substantial speedup over
rendering a full-resolution dataset. Rendering 600 frames of the
full-resolution dataset along the path in Figure 8 takes 316 seconds.
Rendering the same 600 frames with the LOD-sprite technique, us-
ing an error threshold of ��� pixel, takes 32 seconds — a speedup

0 50 100 150 200 250 300 350 400 450 500 550 600
Frame Number

1000

10000

100000

1000000

Number of Triangles

High−Resolution
LOD−sprite

Figure 9: The number of triangles as a function of the frame
number on a semi-log plot. (600 frames; path from Figure 8.)

0 50 100 150 200 250 300 350 400 450 500 550 600

Frame Number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Error (pixels)

Figure 10: The error in pixels as a function of the frame num-
ber for the LOD-sprite run. (600 frames; path from Figure 8.)

of 9.9. Figure 14 shows how the speedup varies as a function of the
error threshold.

5 CONCLUSIONS AND FUTURE WORK

This paper has described the LOD-sprite rendering technique, and
our application of the technique to accelerating terrain rendering.
The technique is a combination of two rich directions in accelerated
rendering for virtual environments: multiple level-of-detail (LOD)
techniques, and image-based modeling and rendering (IBMR) tech-
niques. It is a general-purpose rendering technique that could ac-
celerate rendering for any application. It could be built upon any
LOD decomposition technique. It improves the image quality of
LOD techniques by preserving surface complexity, and it improves
the efficiency of IBMR techniques by increasing the range of novel
views that are possible. The LOD-sprite technique is particularly
well-suited for real-time system architectures that decompose the

295

Proceedings IEEE Visualization ’99, pages 291–298,c� IEEE Computer Society Press, 1999.

0 50 100 150 200 250 300 350 400 450 500 550 600
Frame Number

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

Rendering Time (msec)

High−Resolution
Low−Resolution
LOD−Sprite

Figure 11: The rendering time in milliseconds as a function
of frame number. (600 frames; path from Figure 8.)

0 500 1000 1500 2000
Total Number of Frames

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fraction of Keyframes

Figure 12: The fraction of keyframes as a function of the total
number of frames rendered. (Path from Figure 8.)

scene into coherent layers.
Our primary applied thrust with this work is to augment the ren-

dering engine of a real-time, three-dimensional battlefield visual-
ization system [9]. As this system operates in real-time, our most
important item of future work is to address the variable latency
caused by rendering the keyframes. One optimization is to use a
dual-thread implementation, where one thread renders the keyframe
while another renders each LOD-sprite frame. Another optimiza-
tion is to render the keyframe in advance by predicting where the
viewpoint will be when it is next time to render a keyframe. We can
predict this by extrapolating from the past several viewpoint loca-
tions. Thus, we can begin rendering a new keyframe immediately
after the previous keyframe has been rendered. If the system makes
a bad prediction (perhaps the user makes a sudden, high-speed ma-
neuver), two solutions are possible: 1) we could use the previous
keyframe as the sprite for additional frames of LOD-sprite render-
ing, with the penalty that succeeding frames will have errors beyond
the normal threshold. Or, 2) if the predicted viewpoint is closer to
the current viewpoint than the current viewpoint is to the previous
keyframe, we can use the predicted viewpoint as the keyframe in-

0 1 2 3 4 5
Error Threshold (pixels)

0

0.05

0.1

0.15

0.2

0.25

Fraction of Keyframes

Figure 13: The fraction of keyframes as a function of error
threshold. (600 frames; path from Figure 8.)

0 1 2 3 4 5
Error Threshold (pixels)

2

4

6

8

10

12

14

16

Speedup

Figure 14: Speedup as a function of error threshold. 600
frames. (Path from Figure 8.)

stead. We are also considering implementing a cache of keyframes,
which would accelerate the common virtual environment naviga-
tion behavior of moving back and forth within a particular viewing
region. Issues include how many previous keyframes to cache, and
choosing a cache replacement policy.

The continuous LOD algorithm [14] in our implementation is
well-suited for our application of real-time terrain rendering. How-
ever, the low-resolution mesh generated by this technique does not
preserve silhouette edges, which as demonstrated in Figures 6 and
7, forces us to use the original texture map along the silhouette.
Another problem with many continuous-LOD techniques (includ-
ing [14]) is the artifact caused by sudden resolution changes, which
results in a continuous popping effect during real-time flythroughs.
The solution to this artifact is geomorphing, where the geometry is
slowly changed over several frames. To address both of these is-
sues we are currently integrating the LOD technique of Luebke and
Erikson [15], which preserves silhouette edges and provides a nice
framework for evaluating geomorphing techniques.

296

Proceedings IEEE Visualization ’99, pages 291–298,c� IEEE Computer Society Press, 1999.

Finally, an important limiting factor for the performance of the
LOD-sprite technique, as well as other image-based modeling and
rendering techniques (e.g., [22]), is that OpenGL requires texture
maps to have dimensions which are powers of 2. Thus, many texels
in our texture maps are actually unused. The LOD-sprite technique
could be more efficiently implemented with graphics hardware that
did not impose this constraint.

ACKNOWLEDGMENTS

We acknowledge the valuable contributions of Bala Krishna
Nakshatrala for bug fixes and various improvements to the code,
for re-generating the animations, and for help in preparing the
graphs. This work was supported by Office of Naval Research
grants N000149710402 and N0001499WR20011, and the National
Science Foundation grant MIP-9527694. We acknowledge Larry
Rosenblum for advice and direction during this project.

References

[1] D. G. Aliaga. Visualization of complex models using dynamic
texture-based simplification. Proceedings IEEE Visualization
’96, pages 101–106, Oct. 1996.

[2] S. E. Chen. Quicktime VR - an image-based approach to vir-
tual environment navigation. Computer Graphics (Proc. SIG-
GRAPH ’95), pages 29–38, 1995.

[3] S. E. Chen and L. Williams. View interpolation for image
synthesis. Computer Graphics (Proc. SIGGRAPH ’93), pages
279–288, 1993.

[4] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving
simplification. Computer Graphics (Proc. SIGGRAPH ’98),
pages 115–122, July 1998.

[5] D. Cohen-Or, E. Rich, U. Lerner, and V. Shenkar. A real-time
photo-realistic visual flythrough. IEEE Transactions on Visu-
alization and Computer Graphics, 2(3):255–264, Sept. 1996.

[6] L. Darsa, B. C. Silva, and A. Varshney. Navigating static en-
vironments using image-space simplification and morphing.
Symposium on Interactive 3D Graphics, pages 25–34, Apr.
1997.

[7] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach. Computer Graphics (Proc. SIG-
GRAPH ’96), pages 11–20, Aug. 1996.

[8] P. E. Debevec, Y. Yu, and G. Borshukov. Efficient view-
dependent image-based rendering with projective texture-
mapping. Rendering Techniques’98, pages 105–116, 1998.

[9] J. Durbin, J. E. Swan II, B. Colbert, J. Crowe, R. King,
T. King, C. Scannell, Z. Wartell, and T. Welsh. Battlefield vi-
sualization on the responsive workbench. Proceedings IEEE
Visualization ’98, pages 463–466, Oct. 1998.

[10] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph. Computer Graphics (Proc. SIGGRAPH ’96),
pages 43–54, 1996.

[11] H. Hoppe. Smooth view-dependent level-of-detail control and
its application to terrain rendering. Proceedings IEEE Visual-
ization ’98, pages 35–42, 1998.

[12] Y. Horry, K. ichi Anjyo, and K. Arai. Tour into the picture:
Using a spidery mesh interface to make animation from a sin-
gle image. Computer Graphics (Proc. SIGGRAPH ’97), pages
225–232, Aug. 1997.

[13] M. Levoy and P. Hanrahan. Light field rendering. Computer
Graphics (Proc. SIGGRAPH ’96), pages 31–42, 1996.

[14] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hughes, N. Faust,
and G. Turner. Real-Time, continuous level of detail rendering
of height fields. Computer Graphics (Proc. SIGGRAPH ’96),
pages 109–118, Aug. 1996.

[15] D. Luebke and C. Erikson. View-dependent simplification of
arbitrary polygonal environments. Computer Graphics (Proc.
SIGGRAPH ’97), pages 199–208, Aug. 1997.

[16] P. W. C. Maciel and P. Shirley. Visual navigation of large en-
vironments using textured clusters. Symposium on Interactive
3D Graphics, pages 95–102, Apr. 1995.

[17] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3D
warping. Symposium on Interactive 3D Graphics, pages 7–16,
Apr. 1997.

[18] L. McMillan and G. Bishop. Plenoptic modeling: An image-
based rendering system. Computer Graphics (Proc. SIG-
GRAPH ’95), pages 39–46, 1995.

[19] P. Rademacher and G. Bishop. Multiple-center-of-projection
images. Computer Graphics (Proc. SIGGRAPH ’98), pages
199–206, July 1998.

[20] M. Regan and R. Post. Priority rendering with a virtual real-
ity address recalculation pipeline. Computer Graphics (Proc.
SIGGRAPH ’94), pages 155–162, July 1994.

[21] G. Schaufler and W. Stuerzlinger. A three dimensional image
cache for virtual reality. Computer Graphics Forum (Proc. of
Eurographics ’96), 15(3):227–235, Aug. 1996.

[22] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Sny-
der. Hierarchical image caching for accelerated walkthroughs
of complex environments. Computer Graphics (Proc. SIG-
GRAPH ’96), pages 75–82, Aug. 1996.

[23] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered
depth images. Computer Graphics (Proc. SIGGRAPH ’98),
pages 231–242, July 1998.

[24] F. Sillion, G. Drettakis, and B. Bodelet. Efficient impos-
tor manipulation for real-time visualization of urban scenery.
Computer Graphics Forum (Proc. of Eurographics ’97),
16(3):207–218, Sept. 1997.

[25] M. Soucy, G. Godin, and M. Rioux. A texture-mapping ap-
proach for the compression of colored 3D triangulations. The
Visual Computer, 12(10):503–514, 1996.

[26] R. Szeliski. Video mosaics for virtual environments. IEEE
Computer Graphics and Applications, 16(2):22–30, Mar.
1996.

[27] J. Torborg and J. Kajiya. Talisman: Commodity Real-time 3D
graphics for the PC. Computer Graphics (Proc. SIGGRAPH
’96), pages 353–364, Aug. 1996.

297

Proceedings IEEE Visualization ’99, pages 291–298,c� IEEE Computer Society Press, 1999.

(a) Low resolution with 1,503 triangles. (b) High resolution with 387,937 triangles. (c) LOD-sprite with 1,503 triangles.

(d) Difference: low(a) � high (b). (e) Difference: high(b) � LOD-sprite(c).

Figure 6: Comparing the LOD-sprite technique to a traditional LOD technique, first view (see also color plates).

(a) Low resolution with 2,007 triangles. (b) High resolution with 156,884 triangles. (c) LOD-sprite with 2,007 triangles.

(d) Difference: low(a) � high (b). (e) Difference: high(b) � LOD-sprite(c).

Figure 7: Comparing the LOD-sprite technique to a traditional LOD technique, second view (see also color plates).

298

